top of page

Sorts of rubber

The most common chemical elements in rubber are carbon (C) and hydrogen (H). The polymers of natural rubber are mainly built of these elements. In synthetic rubber these elements are products from the petrochemical industry.

Natural rubber (NR) - production and properties

The rubber tree grows in tropical climates and is cultivated in many countries. The biggest producers are Thailand, Indonesia and Malaysia, which combined produce 80% of world consumption. Plantations can also be found in South America and Africa. When tapping the tree, a cut is made through the bark and the latex drips down into a cup.

A tree with a good yield can give 30-35 grams of rubber per day. The contents of the cups are emptied into containers and transported to a rubber factory. Acetic acid is added to promote coagulation. To manufacture smoked sheets, the rubber is made into sheets in a mill, washed, dried, smoked and finally classified. With the exception of butadiene rubber, natural rubber has the best elasticity of all rubber types. It has very good resistance to abrasion and fatigue. Among the drawbacks are the material's poor resistance to ozone (weather) and oils and fuels.

Natural rubber is mainly used in the production of heavy-duty tires, vibration dampers, springs and bearings. For special purposes it is used in hoses seals, conveyor belts, coated fabrics and other products.

Styrene-butadiene rubber (SBR) - the most common type of synthetic rubber.

When the automobile industry developed, demands for rubber increased sharply. Many trials were made to produce a man-made rubber. The first synthetic rubber could not match natural rubber, but in the course of time several rubber types were developed that had many properties comparable with natural rubber, in some cases even better.

Styrene-butadiene rubber, the most common and cheapest synthetic rubber, serves as an example of the manufacturing principles. The basic material is derived from petroleum (oil) which is a fossil formation from organisms that have been dead for millions of years. In the distillation process at the oil refineries, styrene and butadiene are produced, which are then used as raw materials for the production or styrene-butadiene rubber.

The first step is to let styrene and butadiene react together The new material consists of about 25% styrene, with butadiene making up the remainder. The result is a synthetic rubber that in principle has the same properties as natural rubber. Heat resistance is better but low temperature flexibility and tensile strength are less than for natural rubber. At Trelleborg, around 60% of the polymers used are synthetic, while 40% is natural rubber.

Styrene-butadiene rubber is used in many of the same products as natural rubber. It is also used to cover different types of hose and in a number of other products. For practical reasons, abbreviations of the various rubber types have been internationally approved. These abbreviations are used in this presentation.

Isoprene rubber (IR) - very much as natural rubber

Isoprene rubber has the same chemical structure as natural rubber (polyisoprene). However, it does not contain proteins, fatty acids and the other substances that are present in natural rubber. The physical properties of isoprene rubber are in general somewhat inferior to those of natural rubber but, in principle, the two types are very alike. Isoprene rubber is used in the same type of products as natural rubber.

Butadiene rubber (BR) - the most elastic rubber type

Butadiene rubber is polymerized butadiene. It is used in blends with other rubber types for improved elasticity, wear resistance and low temperature properties. A typical application is a blend of butadiene rubber and natural rubber in truck tires.

Special rubber types

The above mentioned rubber types are so-called general purpose. Many other types are available, each with its own special properties. The most common special types in our products are ethylene-propylene, butyl, chloroprene and nitrile rubber.

bottom of page